FREQUENTLY ASKED QUESTIONS REGARDING PAPRS

Q. What is a PAPR?

A. Powered air-purifying respirator (PAPR) means an air-purifying respirator that uses a blower to force the ambient air through air-purifying elements to the inlet covering.

Q. What are the different types of PAPRs?

A. PAPRs come in a variety of configurations. They can be belt-mounted or face-mounted; they can be equipped with tight-fitting, negative pressure respirators as well as loose-fitting hoods or helmets.

Q. When should I use a PAPR?

- **A.** The following conditions apply for PAPR use:
 - If the physician or other licensed health care professional (PLHCP) finds a medical condition that may place the worker's health at increased risk if a negative pressure respirator is used.
 - When a higher level of eye and face protection may be required due to potential sprays or splashes.
 - o If, for medical or cultural reasons, a gentleman cannot shave, a loose-fitting hood or helmet may be used.
 - When the airborne concentration of a contaminant requires a higher level of protection (maximum use concentration MUC).

Q. What are the limitations of the PAPR?

- **A.** A PAPR cannot be used in an:
 - o oxygen-deficient atmosphere (less than 19.5%) such as a confined space
 - o immediately dangerous to life and health (IDLH) atmosphere
 - o atmosphere in which contaminants are unknown.

Q. What are the advantages of a PAPR?

A. If using a loose-fitting hood or helmet, the annual fit test is not required. Also, gentlemen may have facial hair. Depending upon the cartridge, a PAPR can provide chemical as well as particulate protection. It may be more advantageous to use a PAPR over long periods of time vs. a tight-fitting air purifying respirator.

Q. What are the disadvantages of a PAPR?

A. PAPRs have battery discharge time limitation; thus, time allowed in the contaminated area may be limited. PAPRs are generally more expensive than tight-fitting, negative pressure respirators, and generally require more care and maintenance than tight-fitting, negative pressure respirators.

Q. What is the minimum airflow of the PAPR?

A. Tight-fitting respirators must have a minimum of 4 cubic feet per minute (cfm); loose-fitting hoods or helmets must have 6 cfm of air.

Q. What are some types of batteries that are used with the PAPR?

- A. Four basic types of batteries are used with PAPRs:
 - Nickel Cadmium (NiCd)
 - Nickel Metal Hydride (NiMH)
 - Lithium Ion
 - o Lithium

Q. What are some of the conditions and limitations on the various types of batteries used?

- NiCd, NiMH, and lithium ion batteries are rechargeable. Lithium batteries are typically used in emergency response activities and are non-rechargeable, one-time use batteries.
- Lithium ion batteries typically have a higher cell voltage (3.6 volts) and a higher energy density than other rechargeable batteries. Lithium is a lightweight metal and the batteries have a very low self-discharge rate and no

memory effect. However, there may be stricter regulations on shipping methods for lithium ion batteries than for other battery types.

- NiMH batteries have a higher energy density than NiCd batteries but generally the same voltage (1.2 volts).
- NiMH batteries have a flat discharge characteristic compared to NiCd batteries, but a rapid fall off at the end of the discharge cycle. They generally have a higher self-discharge rate and deteriorate over long storage time. There is also a potential for gas generation with NiMH batteries.
- The major drawback for NiCd batteries is their susceptibility to memory effect. NiCd batteries have a limited cycle life of approximately 500 discharge/recharge cycles. Cadmium is a hazardous material, therefore an out-of-service NiCd battery may be considered a hazardous waste and should be recycled.

Q. What does it mean if my batteries are labeled intrinsically safe?

A. A device, instrument or component that will not produce any spark or thermal effects under any conditions that are normal or abnormal that will ignite a specified gas mixture is considered intrinsically safe. Some batteries are rated as intrinsically safe, while others are not.

Q. What is the best way to clean and disinfect the PAPR?

A. PAPRs should be cleaned according to the manufacturer's specifications.

General Instructions:

Wipe the outside surfaces of the PAPR system with a mild solution of warm water and mild detergent using a cloth dampened with clean, warm water. If necessary, wipe with a cloth dampened with a hypochlorite solution (1 oz. [30ml] of household bleach in 2 gallons [7.5 ml] of water).

Do not clean with organic solvents. **Do not** soak the blower unit or battery in cleaning solutions.

Q. How often should cartridges or filters be changed?

A. Service life determination for particulate filters is not required by OSHA – only for gases and vapors. Particulate filters should be changed out when they become damaged, soiled, or air flow is decreased.

Regarding OSHA Requirements

OSHA requires that a change-out schedule be established that identifies how long a chemical cartridge can be used in a particular workplace before being replaced. OSHA's change-out schedule requirement does not apply to certain chemicals such as benzene and formaldehyde. The change-out schedule from the specific standard must be followed.

IMPORTANT

It is unlikely for particles captured on the filter to be re-aerosolized; however, certain pathogens may be transmitted via physical contact. Filter replacement should be performed in accordance with accepted infection control practices.